

Govt job 2020 (Fillerform) 17K
Education Website
Free Online 몰 Computer Class F

1. Baisc computer 플.
2. Web development 률
3. Hackig © ... more
youtu.be/mIfPC5C-EvQ
Jaipur, Rajasthan

Edit Profile

+9190012 26665 joined using this group's invite link
+918003725657 joined using this group's invite link
+918955546730 joined using this group's invite link

Filler Form

LATEST UPLOADS
UGC NET Paper 1st
Teaching Aptitude
"Level of Teaching"

11:00 AM Level Of Teaching | Teaching 11:00 AM Level Of Teaching I Teaching Aptitude By Jitendra Goswami I NET

LEARNING MATERIAL

Quizzes

Notes

Sample
Papers
UGC NET 100\%

Off Fre

9荡
 इस

ww.filler स बार ;

$5000+\mathrm{MCQ}+\mathrm{PYQ}$
Free Books

Home work
8. Support of a fuzzy set

$$
A=\left\{\frac{x_{1}}{0.2}, \frac{x_{2}}{0.15}, \frac{x_{3}}{0.9}, \frac{x_{4}}{0.95}, \frac{x_{5}}{0.15}\right\}
$$

Within a universal set X is given as
A. $\left\{\frac{x_{1}}{0.15}, \frac{x_{2}}{0.15}, \frac{x_{3}}{0.15}, \frac{x_{4}}{0.15}, \frac{x_{5}}{0.15}\right\}$
B. $\left\{\frac{x_{1}}{0.95}, \frac{x_{2}}{0.95}, \frac{x_{3}}{0.95}, \frac{x_{4}}{0.95}, \frac{x_{5}}{0.95}\right\}$
C. $\left\{x_{3}, x_{4}\right\}$
D. $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$
www.ugc-net.com

\square Approaches to AI

Content:

1.Basic Operation On Fuzzy Sets:
2.Algebric Sum, Product.

www.ugc-

BASIC OPERATION ON FUZZY SETS ${ }^{\text {net.com }}$

1)Equal Sets : Two fuzzy sets A and B are equal if $\mu \mathrm{A}(\mathrm{x})=\mu \mathrm{B}(\mathrm{x}) \quad$ for all $\mathrm{x} \in \mathrm{X}$
and is written as $A=B$. If for atleast one $x \in X$, then A and B are said to be unequal and written $A \neq B$
2) complement : The complement of fuzzy set \mathbb{A} is denoted by Ac (or A^{\prime}) and is defined by its membership as $\mu \mathrm{C} A(x)=1-\mu B(x)$ for all x.

$$
1-\mu \mathrm{c}
$$

Example: If $\mathbb{A}=\{(x 1,0),(x 2,0.3),(x 3,0.5)\}$
Then $\mathbb{A c}=\{(\mathrm{x} 1,1),(\mathrm{x} 2,0.7),(\mathrm{x} 3,0.5)\}$
Since $\mu \mathrm{c} \mathbb{A}(\mathrm{x} 1)=1-\mu \mathbb{A}(\mathrm{x})=1-0=1$
$\mu \mathrm{c} A(\mathrm{x} 2)=1-\mu \mathrm{C} \mathrm{A}(\mathrm{x} 2)=1-0.3=0.7$
and $\mu \mathrm{c} \mathbb{A}(\mathrm{x} 3)=1-\mu \mathbb{A}(\mathrm{x} 3)=1-0.5=0.5$

Que. Given $U=\{1,2,3,4,5,6,7\}$

$$
A=\{(3,0.7),(5,1),(6,0.8)\}
$$

then A will be: (where $-\longrightarrow$ complement)
a. $\quad\{(4,0.7),(2,1),(1,0.8)\}$
b. $\quad\{(4,0.3):.(5,0),(6.0 .2)\}$
c. $\{(1,1),(2,1),(3,0.3),(4,1),(6,0.2),(7,1)\}$
d. $\{(3,0.3),(6.0 .2)\}$

Que. Given $U=\{1,2,3,4,5,6,7\}$

$$
A=\{(3,0.7),(5,1),(6,0.8)\}
$$

then A will be: (where $\sim \rightarrow$ complement)
a. $\quad\{(4,0.7),(2,1),(1,0.8)\}$
b. $\quad\{(4,0.3):.(5,0),(6.0 .2)\}$
c. $\quad\{(1,1),(2,1),(3,0.3),(4,1),(6,0.2),(7,1)\}$
d. $\{(3,0.3),(6.0 .2)\} \quad$ Answer: $(\mathbf{c}) .\{(1,1),(2,1),(3,0.3),(4,1),(6,0.2),(7,1)$
3) UNION: The union of two fuzzy sets A and B is a fuzzy set C given by C = AUB

$$
\mu \bar{A}(\mathrm{x})=\max [\mu \mathrm{A}(\mathrm{x}), \mu \mathrm{B}(\mathrm{x})] ; \mathrm{x} \in \mathrm{X}
$$

Example: If $A=\{(4,0.1),(6,0.5),(8,0.6),(10,0.7)\}$ $B=\{(4,0.2),(6,1),(8,0.4),(10,0.5)\}$
Then C = AUB = \{ $(4,0.2),(6,1),(8,0.6),(10,0.7)\}$
Since $\mu \mathrm{C}(\mathrm{xl})=\max [\mu \mathrm{A}(\mathrm{xl}), \mu \mathrm{B}(\mathrm{xl})]=\max [0.1,0.2]=0.2$
$\mu \mathrm{C}(\mathrm{x} 2)=\max [\mu \mathrm{A}(\mathrm{x} 2), \mu \mathrm{B}(\mathrm{x} 2)]=\max [0.5,1]=1$ $\mu \mathrm{C}(\mathrm{x} 3)=\max [\mu \mathrm{A}(\mathrm{x} 3), \mu \mathrm{B}(\mathrm{x} 3)]=\max [0.4,0.6]=0.6$
$\mu \mathrm{C}(\mathrm{x} 4)=\max [\mu \mathrm{A}(\mathrm{x} 4), \mu \mathrm{B}(\mathrm{x} 4)]=\max [0.7,0.5]=0.7$
4)Intersection: The intersection of two fuzzy sets A and B is a fuzzy set C given by : $\mathrm{C}=\mathrm{A} \cap \mathrm{B}$

$$
\mu \mathrm{A}(\mathrm{x})=\min [\mu \mathrm{A}(\mathrm{x}), \mu \mathrm{B}(\mathrm{x})] ; \mathrm{x} \in \mathrm{X}
$$

Example: if $\mathbb{A}=\{(3,0.1),(5,0.7),(7,0.7)\}$

$$
B=\{(3,0.4),(5,0.8),(7,0.3)\}
$$

$$
\text { Then } \mathbf{C}=\boldsymbol{A} \cap \mathrm{B}=\{(3,0.1),(5,0.7),(7,0.3)\}
$$

Since $\mu \mathrm{C}(\mathrm{xl})=\min [\mu \mathrm{A}(\mathrm{xl}), \mu \mathrm{B}(\mathrm{xl})]=\min [0.1,0.4]=0.1$

$$
\begin{aligned}
& \mu \mathrm{C}(\mathrm{x} 2)=\min [\mu \mathrm{A}(\mathrm{x} 2), \mu \mathrm{B}(\mathrm{x} 2)]=\min [0.7,0.8]=0.7 \\
& \mu \mathrm{C}(\mathrm{x} 3)=\min [\mu \mathrm{A}(\mathrm{x} 3), \mu \mathrm{B}(\mathrm{x} 3)]=\min [0.7,0.3]=0.3
\end{aligned}
$$

2. If A and B are two fuzzy sets with membership functions:

$$
\begin{aligned}
& \mu \mathrm{a}(x)=\{0.2,0.5 ., 0.6,0.1,0.9\} \\
& \mu \mathrm{b}(x)=\{0.1,0.5,0.2,0.7,0.8\}
\end{aligned}
$$

then the value of $\mu a \cap \mu b$ will be
a. $\{0.2,0.5,0.6,0.7,0.9\}$
b. $\quad\{0.2,0.5,0.2,0.1,0.8\}$

$$
\text { TAKE MAX A U B = \{0.2,0.5,0.6,0.7,0.9\} }
$$

$$
\text { TAKE MIN } A \cap B=\{0.1,0.5,0.2,0.1,0.8\}
$$

c. $\quad\{0.1,0.5,0.6,0.1,0.8\}$
d. $\quad\{0.1,0.5,0.2,0.1,0.8\}$
5) DIFFERENCE : The difference of two fuzzy sets A and B is defined by $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{Bc}$

Example : If $\bar{A}=\{(x 1,0.3),(x 2,0.4),(x 3,0.5)\}$ $B=\{(\mathrm{x} 1,0.2),(\mathrm{x} 2,0.6),(\mathrm{x} 3,0.7)\}$
Then Bc $=\{(\mathrm{x} 1,0.8),(\mathrm{x} 2,0.4),(\mathrm{x} 3,0.3)\}$

Note that , except in particular cases $A-B \neq B-A$
6)Algebraic Sum: The algebraic sum of two fuzzy set A and B is defined by the membership function as

$$
\mu \bar{A}+\mathrm{B}(\mathrm{x})=\mu \mathbb{A}(\mathrm{x})+\mu \mathrm{B}(\mathrm{x})-\mu \mathrm{A}(\mathrm{x}) \mu \mathrm{B}(\mathrm{x}) \text { for all } \mathrm{x} \in \mathrm{X}
$$ and written as $\mathrm{A}+\mathrm{B}$

Consider two fuzzy sets.

$$
\begin{aligned}
& A=\left\{\frac{0.2}{1}+\frac{0.3}{2}+\frac{0.4}{3}+\frac{0.5}{4}\right\} \\
& B=\left\{\frac{0.1}{1}+\frac{0.2}{2}+\frac{0.2}{3}+\frac{0}{4}\right\}
\end{aligned}
$$

Find the algebraic sum, algebraic product, sets.

Solution:

[A] Algebraic sum:

$$
\begin{aligned}
& M A+B(\times)=M A(\times)+r B(\times)-M A(\times) \cdot M B(\times) \\
& =\left\{\frac{0.3}{1}+\frac{0.5}{2}+\frac{0.6}{3}+\frac{0.5}{4}\right\} \\
& -\left\{\frac{0.02}{1}+\frac{0.06}{2}+\frac{0.08}{3}\right\} \\
& =\left\{\frac{0.28}{1}+\frac{0.44}{2}+\frac{0.52}{3}+\frac{0.5}{4}\right\}
\end{aligned}
$$

7) Algebraic Product : The algebraic product of two fuzzy sets A and B is defined by two membership functions as

$$
\begin{aligned}
& \mu \bar{A} \cdot \mathrm{~B}(\mathrm{x})=\mu \mathrm{A}(\mathrm{x}) \cdot \mu \mathrm{B}(\mathrm{x}) \text { for all } \mathrm{x} \in \mathrm{X} \\
& \text { and written as } \mathrm{A} \cdot \mathrm{~B}
\end{aligned}
$$

in particular $\mu \mathbb{A} \cdot \mathbb{A}(x)=\mu \mathbb{A} 2(x)=[\mu \bar{A}(x)] 2$ for all $x \in \mathbb{X}$
Example. If $\mathbb{A}=\{(1,0.5),(2,1),(3,0.6)\}$

$$
B=\{(1.1),(2,0.6)\}
$$

Then A + B = \{(1,1), $(2,1),(3,0.6)\}$

$$
\text { and } \bar{A} . B=\{(1,0.5),(2,0.6),(3,0)\}
$$

Consider two fuzzy sets.

$$
\begin{aligned}
& A=\left\{\frac{0.2}{1}+\frac{0.3}{2}+\frac{0.4}{3}+\frac{0.5}{4}\right\} \\
& B=\left\{\frac{0.1}{1}+\frac{0.2}{2}+\frac{0.2}{3}+\frac{0}{4}\right\}
\end{aligned}
$$

[B] Algebraic product:

$$
\operatorname{MAB}(x)=M A(x) M B(x)
$$

$$
=\left\{\frac{0.02}{1}+\frac{0.06}{2}+\frac{0.08}{3}+\frac{0}{4}\right\}
$$

1. If two fuzzy sets A and B are given with membership functions
$\mu_{\mathrm{A}}(\mathrm{x})=\{0.2,0.4,0.8,0.5,0.1\}$
$\mu_{B}(x)=\{0.1,0.3,0.6,0.3,0.2\}$
Then the value of $\mu \overline{\mathrm{A} \cap B}$ will be
A. $\{0.9,0.7,0.4,0.7,0.9\}$
B. $\{0.2,0.4,0.8,0.5,0.2\}$
C. $\{0.1,0.3,0.6,0.3,0.1\}$
D. $\{0.7,0.3,0.4,0.2,0.7\}$

For More Information wWW.ugc-net.com (0)/Fillerform \mathbf{f} /Fillerform in/Fillerform
 (©) info@fillerform.com
 ⑧209837844

