

+91 81453 66384 joined using this group's invite link

+91 70102 37343 joined using this group's invite link

+91 96672 47765 joined using this group's invite link

+91 98557 99207 joined using this group's invite link

+91 60035 13791 joined using this group's invite link

+91 83590 38670 joined using this group's invite link

+91 91497 27505 joined using this group's invite link

+91 70910 66218 joined using this group's invite link

+91 75779 16791 joined using this group's invite link

UGC Paper 1st Free Cl... 120 subscribers

government_job_2020 v •

1,711 6,845 **Posts Followers** Followi

Govt job 2020 (Fillerform) 17K

Education Website

Free Online Computer Class

- Baisc computer !...
- Web development m
- 3. Hackig ... more youtu.be/mlfPC5C-EvQ Jaipur, Rajasthan

Promotions

December 28

Channel created

Channel photo changed

+91 60035 13791 left

+91 90012 26665 joined using this group's invite link

+91 80037 25657 joined using this group's invite link

+91 89555 46730 joined using this group's invite link

New

Edit Profile

Insights

Contact

UGC NET 100%

Free Notes

Live Class

5000+MCQ+PYQ

Free Books

Congratulations

Fillerform JRF Students

Mona **EDUCATION**

Nakum **COMMERCE**

Harkiesh Hindi

Suman **HISTORY**

Radha **ECONOMICS**

Archana Hindi

Kafeel Hindi

Ravindra Singi home SCIENCE

Prabhakar Sanskrit

SHRUTI COMMERCE

SUKHA Hindi

SAURABH E.Science

bhagyashwa Gauraviows. Law COMMERCE

Home work

8. Support of a fuzzy set

$$A = \left\{ \frac{X_1}{0.2} , \frac{X_2}{0.15} , \frac{X_3}{0.9} , \frac{X_4}{0.95} , \frac{X_5}{0.15} \right\}$$

Within a universal set X is given as

A.
$$\left\{ \frac{X_1}{0.15}, \frac{X_2}{0.15}, \frac{X_3}{0.15}, \frac{X_4}{0.15}, \frac{X_5}{0.15} \right\}$$

B.
$$\left\{ \frac{X_1}{0.95}, \frac{X_2}{0.95}, \frac{X_3}{0.95}, \frac{X_4}{0.95}, \frac{X_5}{0.95} \right\}$$

C.
$$\{x_3, x_4\}$$

D.
$$\{x_1, x_2, x_3, x_4, x_5\}$$

☐ Approaches to AI

Content:

1.Basic Operation
On Fuzzy Sets:

2.Algebric Sum, Product.

BASIC OPERATION ON FUZZY SETS net.com

1) Equal Sets: Two fuzzy sets A and B are equal if $\mu A(x) = \mu B(x)$ for all $x \in X$

and is written as A=B . If for atleast one $x \in X$, then A and B are said to be unequal and written $A \neq B$

2) complement: The complement of fuzzy set A is denoted by Ac (or A') and is defined by its membership as

$$\mu c A(x) = 1 - \mu B(x)$$
 for all x.

 $1 - \mu c$

Example: If $A = \{(x1,0), (x2,0.3), (x3,0.5)\}$

Then
$$Ac = \{(x1,1), (x2,0.7), (x3,0.5)\}$$

Since $\mu c A(x1) = 1 - \mu A(x) = 1 - 0 = 1$
 $\mu c A(x2) = 1 - \mu c A(x2) = 1 - 0.3 = 0.7$
and $\mu c A(x3) = 1 - \mu A(x3) = 1 - 0.5 = 0.5$

Que. Given $U = \{1,2,3,4,5,6,7\}$

 $A = \{(3, 0.7), (5, 1), (6, 0.8)\}$

then A will be: (where ~ → complement)

a. {(4, 0.7), (2,1), (1,0.8)}

b. {(4, 0.3.): (5, 0), (6. 0.2) }

c. {(1, 1), (2, 1), (3, 0.3), (4, 1), (6,0.2), (7, 1)}

d. {(3, 0.3), (6.0.2)}

Que. Given
$$U = \{1,2,3,4,5,6,7\}$$

$$A = \{(3, 0.7), (5, 1), (6, 0.8)\}$$

then A will be: (where ~ → complement)

a. {(4, 0.7), (2,1), (1,0.8)}

b. {(4, 0.3.): (5, 0), (6. 0.2) }

c. {(1, 1), (2, 1), (3, 0.3), (4, 1), (6,0.2), (7, 1)}

d. {(3, 0.3), (6.0.2)}

Answer: (c). $\{(1, 1), (2, 1), (3, 0.3), (4, 1), (6, 0.2), (7, 1)\}$

3) UNION: The union of two fuzzy sets A and B is a fuzzy set C given by C = AUB

```
\mu A(x) = \max \left[ \mu A(x), \mu B(x) \right]; x \in X
Example: If A = \{ (4,0.1), (6,0.5), (8,0.6), (10,0.7) \}
            B = \{ (4,0.2),(6,1),(8,0.4),(10,0.5) \}
      Then C = AUB = \{ (4,0.2), (6,1), (8,0.6), (10,0.7) \}
      Since \mu C(x1) = \max [\mu A(x1), \mu B(x1)] = \max[0.1, 0.2] = 0.2
\mu C(x2) = \max [\mu A(x2), \mu B(x2)] = \max[0.5, 1] = 1
\mu C(x3) = \max [\mu A(x3), \mu B(x3)] = \max[0.4, 0.6] = 0.6
\mu C(x4) = \max [\mu A(x4), \mu B(x4)] = \max[0.7, 0.5] = 0.7
```

4) Intersection: The intersection of two fuzzy sets A and B is a fuzzy . set C given by : $C = A \cap B$

$$\mu A(x) = \min [\mu A(x), \mu B(x)]; x \in X$$

Example: if A =
$$\{(3,0.1), (5,0.7), (7,0.7)\}$$

B = $\{(3,0.4), (5,0.8), (7,0.3)\}$
Then C = A \cap B = $\{(3,0.1), (5,0.7), (7,0.3)\}$

Since
$$\mu C(x1) = \min [\mu A(x1), \mu B(x1)] = \min[0.1, 0.4] = 0.1$$

 $\mu C(x2) = \min [\mu A(x2), \mu B(x2)] = \min[0.7, 0.8] = 0.7$
 $\mu C(x3) = \min [\mu A(x3), \mu B(x3)] = \min[0.7, 0.3] = 0.3$

2.	If A and B are two fuzzy sets with membership functions:			
	μ a(χ) ={0.2,0.5.,0.6,0.1,0.9}			
	μb (χ)= {0.1,0.5,0.2,0.7,0.8}			
	then the value of µa ∩ µb will be			
a.	{0.2,0.5,0.6,0.7,0.9}	TAKE MAX A	$UB = \{0.2, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5$	0.6,0.7,0.9}
b.	{0.2, 0.5,0.2, 0.1,0.8}	TAKE MIN A	$\cap B = \{0.1, 0.5, $	0.2, 0.1, 0.8}
c.	{0.1, 0.5, 0.6, 0.1,0.8}			
d.	{0.1, 0.5, 0.2, 0.1,0.8}			

net.com

5) DIFFERENCE: The difference of two fuzzy sets A and B is defined by $A-B=A\cap Bc$

Example: If
$$A = \{(x1,0.3), (x2,0.4), (x3,0.5)\}$$

 $B = \{(x1,0.2), (x2,0.6), (x3,0.7)\}$
Then $Bc = \{(x1,0.8), (x2,0.4), (x3,0.3)\}$

Note that, except in particular cases $A - B \neq B - A$

6)Algebraic Sum: The algebraic sum of two fuzzy set A and B is defined by the membership function as

$$\mu A + B(x) = \mu A(x) + \mu B(x) - \mu A(x) \mu B(x)$$
 for all $x \in X$ and written as $A + B$

Consider two fuzzy sets.

$$A = \left\{ \begin{array}{c} \frac{0.2}{1} + \frac{0.3}{2} + \frac{0.4}{3} + \frac{0.5}{4} \right\}$$

$$B = \left\{ \begin{array}{c} \frac{0.1}{1} + \frac{0.2}{2} + \frac{0.2}{3} + \frac{0}{4} \right\}$$

Find the algebraic sum, algebraic product, sets.

Solution:

[A] Algebraic sum:

MA + B (x) = MA (x) + r B (x) - MA (x) . MB (x)
=
$$\left\{ \frac{0.3}{1} + \frac{0.5}{2} + \frac{0.6}{3} + \frac{0.5}{4} \right\}$$

- $\left\{ \frac{0.02}{1} + \frac{0.06}{2} + \frac{0.08}{3} \right\}$
= $\left\{ \frac{0.28}{1} + \frac{0.44}{2} + \frac{0.52}{3} + \frac{0.5}{4} \right\}$

7) Algebraic Product: The algebraic product of two fuzzy sets A and B is defined by two membership functions as

$$\mu$$
A.B (x) = μ A (x) . μ B(x) for all x \in X and written as A.B

in particular
$$\mu A.A(x) = \mu A 2 (x) = [\mu A(x)]2$$
 for all $x \in X$

Example. If
$$A = \{(1,0.5), (2,1), (3,0.6)\}$$

 $B = \{(1.1), (2,0.6)\}$
Then $A + B = \{(1,1), (2,1), (3,0.6)\}$
and $A.B = \{(1,0.5), (2,0.6), (3,0)\}$

Consider two fuzzy sets.

$$A = \left\{ \frac{0.2}{1} + \frac{0.3}{2} + \frac{0.4}{3} + \frac{0.5}{4} \right\}$$

$$B = \left\{ \frac{0.1}{1} + \frac{0.2}{2} + \frac{0.2}{3} + \frac{0}{4} \right\}$$

[B] Algebraic product:

$$MAB(x) = MA(x) MB(x)$$

$$= \{ \frac{0.02}{1} + \frac{0.06}{2} + \frac{0.08}{3} + \frac{0}{4} \}$$

HOME WORK

1. If two fuzzy sets A and B are given with membership functions

$$\mu_A(x) = \{0.2, 0.4, 0.8, 0.5, 0.1\}$$

$$\mu_{B}(x) = \{0.1, 0.3, 0.6, 0.3, 0.2\}$$

Then the value of μ A \cap B will be

For More Information

- www.ugc-net.com

 [O]/Fillerform f /Fillerform in /Fillerform
 - info@fillerform.com
 - 8209837844